EXPERIMENT 5
Clipping & Clamping Circuits

Objective
To calculate, compare, draw, and measure the output voltages of series and parallel clipping circuits.

Tools and Equipments Required
- DMM (Digital Multi Meter)
- DC Power Supply
- Function Generator
- 1 uF x 1
- 2.2 kΩ x 1
- 1 kΩ x 1
- Germanium Diode x 1
- Silicon Diode x 1

PROCEDURE

PART 1. Threshold Voltage
Determine the threshold voltage for the silicon and germanium diodes, V_T, using the diode-checking capability of the DMM.

V_T (silicon) = ________________
V_T (germanium) = ________________

PART 2. Parallel Clippers
a) Record the measured value of resistance value of R and construct the circuit of Fig. 3.1. Note that the input voltage is an 8 V$_{p-p}$ square-wave at frequency of 1000 Hz. (Here E = 1.5V DC supply)
b) Using the measured values of V_T, E, and R, calculate the output voltage V_O. Show all steps of your calculations. Note that the output voltage will have different values for each input values of $+4$ V and -4 V.

$$V_O(\text{calculated}) = \underline{\text{and}}$$

c) Sketch the expected waveform on Graph 3.1 for V_O.

\[\text{Graph 3.1 Expected waveform}\]

\[\text{Volt/Div=}\underline{\text{………………..}}\]

\[\text{Time/Div=}\underline{\text{………………..}}\]
d) Sketch the **observed waveform** on Graph 3.2. [from the oscilloscope (while coupling switch is at DC position)]

![Graph 3.2 Observed waveform]

Volt/Div=………………….

Time /Div=………………

Graph 3.2 Observed waveform

e) **Reverse the DC source E** and calculate the output voltage V_O. Show all steps of your calculations. Note that the output voltage will have different values for each input values of +4 V and -4 V)

V_O(calculated)= ______ and ______
f) Sketch the expected waveform on Graph 3.3 for V_O.

![Graph 3.3 Expected waveform](image)

Volt/Div=…………………..

Time /Div=………………..

Graph 3.3 Expected waveform

g) Sketch the **observed waveform** on fig.3.4 [from the oscilloscope (while coupling switch is at DC position)]

![Graph 3.4 Observed waveform](image)

Volt/Div=…………………..

Time /Div=…………………..
Part 3: Clamper Circuits

Construct the network of Fig.4.1. and change the input signal to 8 V\text{p-p} square wave at frequency of 1 kHz

![Clamper Circuit Diagram](image)

Figure 4.1.
Sketch the observed waveform on Table 4.1.a from the oscilloscope

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1.a Observed waveform

Reverse the Diode and Sketch the observed waveform on Table 4.1.b from the oscilloscope

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1.b Observed waveform
PART 4. Clampers – Effect of R

a) Determine the time constant \(\tau = RC \) for the network at Figure 4.1. for measured values of R and C, then change the input signal to 8 V\(_{pp}\) sinusoidal-wave at frequency of 1000 Hz

\[
\begin{align*}
R \text{ (measured)} &= \underline{\quad} \\
C \text{ (measured)} &= \underline{\quad} \\
\tau \text{ (calculated)} &= \underline{\quad}
\end{align*}
\]

b) Calculate the period of the input signal and determine half of the period as “off” state for the diode. Note that \(T(\text{period}) = 1/f(\text{frequency}) \)

\[
\begin{align*}
T \text{ (calculated)} &= \underline{\quad} \\
T/2 \text{ (calculated)} &= \underline{\quad}
\end{align*}
\]

c) The discharge (or charge) period of an RC circuit is 5\(\tau \). And for good clamping action it is important that 5\(\tau \) must be much larger than \(T/2 \) of applied signal. Compare calculated values of 5\(\tau \) and \(T/2 \).

d) Change R to 1 k\(\Omega \). What would you expect for the output waveform \(V_O \) depend on \(T/2 \) and new 5\(\tau \) values?

e) Record the observed output waveform to Table 4.3.a.
f) Is there any distortion? Are you surprised by the positive and negative peaks? Why?